Перевод: со всех языков на все языки

со всех языков на все языки

Journal of the Society of Motion Picture and Television Engineers

  • 1 Lauste, Eugène Augustin

    [br]
    b. 1857 Montmartre, France d. 1935
    [br]
    French inventor who devised the first practicable sound-on-film system.
    [br]
    Lauste was a prolific inventor who as a 22-year-old had more than fifty patents to his name. He joined Edison's West Orange Laboratory as Assistant to W.K.L. Dickson in 1887; he was soon involved in the development of early motion pictures, beginning an association with the cinema that was to dominate the rest of his working life. He left Edison in 1892 to pursue an interest in petrol engines, but within two years he returned to cinematography, where, in association with Major Woodville Latham, he introduced small but significant improvements to film-projection systems. In 1900 an interest in sound recording, dating back to his early days with Edison, led Lauste to begin exploring the possibility of recording sound photographically on film alongside the picture. In 1904 he moved to England, where he continued his experiments, and by 1907 he had succeeded in photographing a sound trace and picture simultaneously, each image occupying half the width of the film.
    Despite successful demonstrations of Lauste's system on both sides of the Atlantic, he enjoyed no commercial success. Handicapped by lack of capital, his efforts were finally brought to an end by the First World War. In 1906 Lauste had filed a patent for his sound-on-film system, which has been described by some authorities as the master patent for talking pictures. Although this claim is questionable, he was the first to produce a practicable scund-on-film system and establish the basic principles that were universally followed until the introduction of magnetic sound.
    [br]
    Bibliography
    11 August 1906, with Robert R.Haines and John S.Pletts, British Patent no. 18,057 (sound-on-film system).
    Further Reading
    The most complete accounts of Lauste's work and the history of sound films can be found in the Journal of the Society of Motion Picture (and Television) Engineers.
    For an excellent account of Lauste's work, see the Report of the Historical Committee, 1931, Journal of the Society of Motion Picture Engin eers 16 (January):105–9; and Merritt Crawford, 1941, Journal of the Society of Motion Picture Engineers, 17 (October) 632–44.
    For good general accounts of the evolution of sound in the cinema, see: E.I.Sponable, 1947, Journal of the Society of Motion Picture Engineers 48:275–303 and 407–22; E.W.Kellog, 1955, Journal of the Society of Motion Picture Engineers 64:291–302 and 356–74.
    JW

    Biographical history of technology > Lauste, Eugène Augustin

  • 2 Poniatoff, Alexander Mathew

    [br]
    b. 25 March 1892 Kazan District, Russia
    d. 24 October 1980
    [br]
    Russian (naturalized American in 1932) electrical engineer responsible for the development of the professional tape recorder and the first commercially-successful video tape recorder (VTR).
    [br]
    Poniatoff was educated at the University of Kazan, the Imperial College in Moscow, and the Technische Hochschule in Karlsruhe, gaining degrees in mechanical and electrical engineering. He was in Germany when the First World War broke out, but he managed to escape back to Russia, where he served as an Air Force pilot with the Imperial Russian Navy. During the Russian Revolution he was a pilot with the White Russian Forces, and escaped into China in 1920; there he found work as an assistant engineer in the Shanghai Power Company. In 1927 he immigrated to the USA, becoming a US citizen in 1932. He obtained a post in the research and development department of the General Electric Company in Schenectady, New York, and later at Dalmo Victor, San Carlos, California. During the Second World War he was involved in the development of airborne radar for the US Navy.
    In 1944, taking his initials to form the title, Poniatoff founded the AMPEX Corporation to manufacture components for the airborne radar developed at General Electric, but in 1946 he turned to the production of audio tape recorders developed from the German wartime Telefunken Magnetophon machine (the first tape recorder in the truest sense). In this he was supported by the entertainer Bing Crosby, who needed high-quality replay facilities for broadcasting purposes, and in 1947 he was able to offer a professional-quality product and the business prospered.
    With the rapid post-war boom in television broadcasting in the USA, a need soon arose for a video recorder to provide "time-shifting" of live TV programmes between the different US time zones. Many companies therefore endeavoured to produce a video tape recorder (VTR) using the same single-track, fixed-head, longitudinal-scan system used for audio, but the very much higher bandwidth required involved an unacceptably high tape-speed. AMPEX attempted to solve the problem by using twelve parallel tracks and a machine was demonstrated in 1952, but it proved unsatisfactory.
    The development team, which included Charles Ginsburg and Ray Dolby, then devised a four-head transverse-scan system in which a quadruplex head rotating at 14,400 rpm was made to scan across the width of a 2 in. (5 cm) tape with a tape-to-head speed of the order of 160 ft/sec (about 110 mph; 49 m/sec or 176 km/h) but with a longitudinal tape speed of only 15 in./sec (0.38 m/sec). In this way, acceptable picture quality was obtained with an acceptable tape consumption. Following a public demonstration on 14 April 1956, commercial produc-tion of studio-quality machines began to revolutionize the production and distribution of TV programmes, and the perfecting of time-base correctors which could stabilize the signal timing to a few nanoseconds made colour VTRs a practical proposition. However, AMPEX did not rest on its laurels and in the face of emerging competition from helical scan machines, where the tracks are laid diagonally on the tape, the company was able to demonstrate its own helical machine in 1957. Another development was the Videofile system, in which 250,000 pages of facsimile could be recorded on a single tape, offering a new means of archiving information. By 1986, quadruplex VTRs were obsolete, but Poniatoff's role in making television recording possible deserves a place in history.
    Poniatoff was President of AMPEX Corporation until 1955 and then became Chairman of the Board, a position he held until 1970.
    [br]
    Further Reading
    A.Abrahamson, 1953, "A short history of television recording", Part I, JSMPTE 64:73; 1973, Part II, Journal of the Society of Motion Picture and Television Engineers, 82:188 (provides a fuller background).
    Audio Biographies, 1961, ed. G.A.Briggs, Wharfedale Wireless Works, pp. 255–61 (contains a few personal details about Poniatoff's escape from Germany to join the Russian Navy).
    E.Larsen, 1971, A History of Invention.
    Charles Ginsburg, 1981, "The horse or the cowboy. Getting television on tape", Journal of the Royal Television Society 18:11 (a brief account of the AMPEX VTR story).
    KF / GB-N

    Biographical history of technology > Poniatoff, Alexander Mathew

  • 3 Chrétien, Henri Jacques

    [br]
    b. 1879 Paris, France
    d. 7 February 1956 Washington, USA
    [br]
    French astrophysicist, inventor of the anamorphoser, which became the basis of the Cinemascope motion picture system.
    [br]
    Chrétien studied science, and after obtaining his bachelors degree he started his working life at Meudon Observatory. He married in 1910, the same year as he was appointed Head of Astrophysics at Nice. In 1917 he helped to found the Institut d'Optique in Paris. Chrétien became Professor of astrophysics at the Sorbonne and in 1927, as part of his work on optical systems, demonstrated the use of an anamorphic lens for wide-screen motion pictures. Although the system was demonstrated in Washington as early as 1928 and again at the Paris International Exposition of 1937, it was not until 1952 that Twentieth-Century Fox were able to complete purchase of the patents which became the basis of their Cinemascope system. Cinemascope was one of the most successful technical innovations introduced by film studios in the early 1950s as part of their attempts to combat competition from television. The first Cinemascope epic, The Robe, shown in 1953, was an outstanding commercial success, and a series of similarly spectacular productions followed.
    [br]
    Further Reading
    R.Kingslake, 1989, A History of the Photographic Lens, Boston (biographical information and technical details of the anamorphic lens).
    JW

    Biographical history of technology > Chrétien, Henri Jacques

  • 4 Jenkins, Charles Francis

    [br]
    b. 1867 USA
    d. 1934 USA
    [br]
    American pioneer of motion pictures and television.
    [br]
    During the early years of the motion picture industry, Jenkins made many innovations, including the development in 1894 of his own projector, the "Phantoscope", which was widely used for a number of years. In the same year he also suggested the possibility of electrically transmitting pictures over a distance, an interest that led to a lifetime of experimentation. As a result of his engineering contributions to the practical realization of moving pictures, in 1915 the National Motion Picture Board of Trade asked him to chair a committee charged with establishing technical standards for the industry. This in turn led to his proposing the creation of a professional society for those engineers in the industry, and the following year the Society of Motion Picture Engineers (later to become the Society of Motion Picture and Television Engineers) was formed, with Jenkins as its first President. Soon after this he began experiments with mechanical television, using both the Nipkow hole-spiral disc and a low-definition system of his own, based on rotating bevelled glass discs (his so-called "prismatic rings") and alkali-metal photocells. In the 1920s he gave many demonstrations of mechanical television, including a cable transmission of a crude silhouette of President Harding from Washington, DC, to Philadelphia in 1923 and a radio broadcast from Washington in 1928. The following year he formed the Jenkins Television Company to make television transmitters and receivers, but it soon went into debt and was acquired by the de Forest Company, from whom RCA later purchased the patents.
    [br]
    Principal Honours and Distinctions
    First President, Society of Motion Picture Engineers 1916.
    Bibliography
    1923, "Radio photographs, radio movies and radio vision", Transactions of the Society of Motion Picture Engineers 16:78.
    1923, "Recent progress in the transmission of motion pictures by radio", Transactions of
    the Society of Motion Picture Engineers 17:81.
    1925, "Radio movies", Transactions of the Society of Motion Picture Engineers 21:7. 1930, "Television systems", Journal of the Society of Motion Picture Engineers 15:445. 1925. Vision by Radio.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry, 1925–41: University of Alabama Press.
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Sons.
    1926. "The Jenkins system", Wireless World 18: 642 (contains a specific account of Jenkins's work).
    KF

    Biographical history of technology > Jenkins, Charles Francis

  • 5 Ives, Herbert Eugene

    [br]
    b. 1882 USA
    d. 1953
    [br]
    American physicist find television pioneer.
    [br]
    Ives gained his PhD in physics from Johns Hopkins University, Baltimore, Maryland, and subsequently served in the US Signal Corps, eventually gaining experience in aerial photography. He then joined the Western Electric Engineering Department (later Bell Telephone Laboratories), c.1920 becoming leader of a group concerned with television-image transmission over telephone lines. In 1927, using a Nipkow disc, he demonstrated 50-line, 18 frames/sec pictures that could be displayed as either 2 in.×2 1/2 in. (5.1 cm×6.4 cm) images suitable for a "wirephone", or 2 ft ×2 1/2 ft (61 cm×76 cm) images for television viewing. Two years later, using a single-spiral disc and three separately modulated light sources, he was able to produce full-colour images.
    [br]
    Bibliography
    1915, "The transformation of colour mixture equations", Journal of the Franklin Institute 180:673.
    1923, "do—Pt II", Journal of the Franklin Institute 195–23.
    1925, "Telephone picture transmission", Transactions of the Society of Motion Picture and Television Engineers 23:82.
    1929, "Television in colour", Bell Laboratories Record 7:439.
    1930, with A.L.Johnsrul, "Television in colour by a beam-scanning method", Journal of the Optical Society of America 20:11.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Ives, Herbert Eugene

  • 6 Fischer, E.

    [br]
    fl. 1930s Switzerland
    [br]
    Swiss engineer who invented the Eidophor large-screen television projector.
    [br]
    Fischer was a professor of engineering at the Swiss Federal Institute of Technology in the late 1930s. Interested in the emerging technology for television, he was of the opinion that the growth of television would take place through the development and use of large-screen cinema-type displays serving large audiences. He therefore carried out research into suitable techniques. Realizing the brightness limitations of projection systems based on the optical magnification of the image produced by a conventional cathode ray tube, he used the deflected electron-beam, not to excite a phosphor screen, but to deposit a variable charge on the surface of a film or oil. By means of a Schlieren slit system, the consequent deformations of the surface were used to spatially modulate the light from an electric arc or a discharge tube, giving a large, high-brightness image. Although the idea, first put forward in 1939, was not taken up for cinema television, the subsequent requirement of the US National Aeronautics and Space Administration in the 1960s for large colour displays in its Command and Control Centres led to the successful development of the idea by Gretag AG, a subsidiary of Ciba-Geigy: separate units were used for the red, green and blue images. In the 1990s, colour Eidophor projectors were used for large conference meetings and pop concerts.
    [br]
    Bibliography
    1946, "Views on the suitability of a cathode ray tube with a fluorescent screen for projection in cinemas", Bulletin of the Association of Swiss Electricians 39:468 (describes the concept of the Eidophor).
    Further Reading
    E.H.Baumann, 1953, "The Fischer large screen projection system", Journal of Society of Motion Picture and Television Engineers 60:344.
    A.Robertson, 1976, "Projection television. A review of current practice in large-screen projectors", Wireless World 47.
    KF

    Biographical history of technology > Fischer, E.

См. также в других словарях:

  • Society of Motion Picture and Television Engineers — The Society of Motion Picture and Television Engineers or SMPTE, (pronEng|ˈsɪmpti and sometimes IPA|/ˈsʌmpti/), founded in 1916 as the Society of Motion Picture Engineers or SMPE, is an international professional association, based in the United… …   Wikipedia

  • motion-picture technology — Introduction       the means for the production and showing of motion pictures. It includes not only the motion picture camera and projector but also such technologies as those involved in recording sound, in editing both picture and sound, in… …   Universalium

  • motion picture, history of the — Introduction       history of the medium from the 19th century to the present. Early years, 1830–1910 Origins       The illusion of motion pictures is based on the optical phenomena known as persistence of vision and the phi phenomenon. The first …   Universalium

  • motion picture — motion picture, adj. 1. a sequence of consecutive pictures of objects photographed in motion by a specially designed camera (motion picture camera) and thrown on a screen by a projector (motion picture projector) in such rapid succession as to… …   Universalium

  • Audio Engineering Society — Established in 1948, the Audio Engineering Society (AES) draws its membership from amongst engineers, scientists, manufacturers and other organizations and individuals with an interest or involvement in the professional audio industry. They are… …   Wikipedia

  • Cinematograph — The cinématographe Lumière in projection mode. A cinematograph is a film camera, which also serves as a film projector and developer. It was invented in the 1890s.[notes 1] There is much dispute as to the identity of its inventor. Some argue …   Wikipedia

  • Daniel McFarlan Moore — 1906 photograph taken by the light of a Moore lamp Born February 27, 1869(1869 02 27) Northumberland, Pennsylvania Died …   Wikipedia

  • Зимний сад (фильм — Зимний сад (фильм, 1895) Зимний сад Lutte Жанр короткометражка Режиссёр Макс Складановский, Эмиль Складановский В главных ролях неизвестно …   Википедия

  • Зимний сад (фильм, 1895) — Зимний сад Wintergartenprogramm Жанр короткометражка Режиссёр Макс Складановский, Эмиль Складановский В главных ролях …   Википедия

  • Movietone sound system — The Movietone sound system is a sound on film method of recording sound for motion pictures that guarantees synchronization between sound and picture. It achieves this by recording the sound as a variable density optical track on the same strip… …   Wikipedia

  • The Matrix — For the series, see The Matrix (franchise). For other uses, see Matrix. The Matrix Theatrical release poster Directed by Andy Wachowski Larry Wachowski …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»